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Do They Need to See It to Learn It? Spatial Abilities, Representational Competence, 

and Conceptual Knowledge in Statics 
 

Abstract 

A growing body of research indicates spatial visualization skills are important to success in many 

STEM disciplines, including several engineering majors that rely on a foundation in engineering 

mechanics. Many fundamental mechanics concepts such as free-body diagrams, moments, and 

vectors are inherently spatial in that application of the concept and related analytical techniques 

requires visualization and sketching. Visualization may also be important to mechanics learners’ 

ability to understand and employ common mechanics representations and conventions in 

communication and problem solving, a skill known as representational competence. In this 

paper, we present early research on how spatial abilities might factor in to students’ conceptual 

understanding of vectors and associated representational competence.  

We administered the Mental Cutting Test (MCT), a common assessment of spatial abilities, in 

the first and last week of the term. We also administered the Test of Representational 

Competence with Vectors (TRCV), a targeted assessment of vector concepts and representations, 

in week one and at mid-term. The vector post-test came after coverage of moments and cross 

products. We collected this assessment data in statics courses across multiple terms at three 

different colleges. To understand how spatial skills relate to the development of representational 

competence, we use a multiple regression model to predict TRCV scores using the pre-class 

MCT scores as well as other measures of student preparation in the form of grades in prerequisite 

math and physics coursework. We then extend the analysis to consider both MCT and TRCV 

scores as predictors for student performance on the Concept Assessment Test in Statics. We find 

that spatial abilities are a factor in students’ development of representational competence with 

vectors. We also find that representational competence with vectors likely mediates the 

importance of spatial abilities to student success in developing broader conceptual understanding 

in statics. We conclude by discussing implications for mechanics instruction.  

 

  



 

 

Introduction 

Students enter an engineering statics course with relevant knowledge and skills they have gained 

from prior academic work and life experiences that we could roughly place into three categories: 

math preparation, physics preparation, and a third category lumping together a collection of more 

general skills such as spatial visualization and problem solving. Each student brings a different 

mix of strengths and weaknesses in these three categories to their time focused on learning 

statics. Like most engineering fundamentals courses, statics does not introduce anything 

fundamentally new to this mix. Rather, the goal is to help students further develop their 

foundation and synthesize knowledge and skills toward more sophisticated applications. A 

particular student’s experience of the learning activities we design to support this effort is likely 

highly dependent on the foundation they have brought to the course. More general academic 

skills and attributes such as motivation, self-regulation, self-efficacy, sense of belonging and 

mindset also influence how students engage with the course.  

Existing research demonstrates the importance of math and physics preparation to student 

success in mechanics [1], [2], [3], [4], [5]. Problem solving skill is also clearly an important 

component to success [5]. The correlation of spatial abilities to broader measures of success and 

retention for engineering majors in general is well-established [6]. However, existing studies 

exploring the importance of spatial abilities to success in mechanics courses find mixed results. 

Many fundamental concepts such as free-body diagrams, moments, and vectors are inherently 

spatial, especially in three-dimensional applications [7]. Further evidence of the spatial nature 

lies in the finding that students’ spatial abilities improve in statics at a higher rate than in other 

courses [8]. Research is less conclusive on the importance of spatial skills to student success in 

mechanics courses specifically. Helweg [9] finds a weak correlation between scores on the 

Pursue Spatial Visualization Test: Rotations (PSVT:R) [10] and final course grades. Anderson 

finds no significant correlation between students’ spatial abilities and course performance, but 

does find that spatial abilities are a predictor of student gains in conceptual knowledge [1]. 

Higley also finds that spatial skills measures were not significant predictors of exam scores, but 

were a significant factor in identifying clusters of common mistake patterns [11]. In summary, 

existing research identifies spatial skills as a factor in student learning in statics and likely 

important to students’ development of conceptual knowledge. The interaction with other 

measures of preparation is complex, however, and it is not clear how important spatial abilities 

are to eventual course success. It may be that students with lower spatial abilities are able to 

compensate by leveraging other strengths. It could also be that many of the students with lowest 

spatial abilities do not progress through prerequisite coursework to this point in the curriculum.      

The cloudy picture on the importance of spatial skills to success in mechanics might become 

clearer if we consider more closely how this relationship is less direct than it may be in other 

foundational courses such as engineering graphics. In mechanics courses, students deploy their 

spatial skills to interpret the representations we use to communicate concepts. Understanding 

what each representation means and how to apply it effectively in problem solving is important 

to their development of both conceptual and procedural knowledge. Kozma and Russel [12] 

proposed the idea of representational competence (RC) in the context of chemistry education 



 

 

research to describe the ability to use multiple representations of a concept as appropriate for 

learning, problem solving, and communication. While there is still no consensus on RC as a 

unified theoretical framework [13], the construct is commonly used in the science education 

literature and is seen as a marker of domain expertise [14], [15], [16]. Existing engineering 

education research has applied the construct of RC to a lesser extent, but also makes connections 

between RC and students’ conceptual understanding [17] [18]. In research more closely related 

to RC in mechanics, Johnson-Glauch explores how the representations chosen to communicate 

problem statements influence student problem solving in statics [19].  

As stated above, it is clear that statics involves representations that are spatial in nature. It is less 

clear how spatial abilities influence student success in the course. The vector language of 

mechanics utilizes mathematical forms of representation as well as spatial forms of 

representation like diagrams. These two forms of representation convey overlapping but not 

identical information. This creates the potential for a scenario where a student is strong in one 

but weaker with the other. Although ultimately a student would need to achieve mastery of 

spatial representations to achieve true expertise, in the short term they may be able to use their 

strength with one form of representation to compensate for weakness with another. Figure 1 

shows a diagram for how the student preparation categories described previously serve as 

foundation for their development of RC as they progress through a statics course. Note that we 

could apply the model envisioned here more broadly to think about RC in virtually any 

engineering fundamentals course. 

 

 

Figure 1. Conceptual model for how students might build on a foundation of prerequisite skills 

and knowledge to develop representational competence in a statics course. 

 

In this paper, we explore the importance of spatial abilities to students’ understanding of vector 

representations and the subsequent importance of students’ RC with vectors to developing 

conceptual understanding in statics. Correlation of conceptual knowledge to overall course 

grades can vary widely across instructors and institutions for a variety of valid reasons [20]. 



 

 

Nonetheless, conceptual understanding is important to students’ ability to transfer their learning 

to follow-on coursework as well as to eventual competency in engineering practice [21]. 

Two overarching research questions guide our study design and analysis: 

RQ1: How important are spatial abilities to students’ development of representational 

competence with vectors? 

RQ2: How important is students’ representational competence with vectors to their achievement 

of broader conceptual understanding in statics? 

In order to address these questions, we administered multiple assessments at different times 

throughout statics courses at three community colleges. We also collected data on students’ 

prerequisite course grades to serve as indicators of their math and physics preparation. Our 

analysis investigates how these various measures of student preparation and learning during the 

course predict conceptual knowledge measured at the end.  

Study Design 

The diagram in Figure 2 on the next page depicts a model for how conceptual learning might 

occur during a statics course when considered through the lens of the two research questions 

posed above. Students enter the course with a variety of preparation levels in relevant areas. This 

preparation influences how students experience learning activities in the first weeks that develop 

and review vector concepts and analytical procedures before and/or integrated with applications 

in the context of foundational statics concepts like forces, moments, and free-body diagrams. 

Students’ development of RC with vectors in this context serves as preparation for learning 

experiences in the second half of the course that are focused on more advanced and integrated 

topics including rigid body equilibrium, structures, and internal forces.  

We acknowledge this model is oversimplified in that conceptual learning is inherently nonlinear 

and complex [22], but still consider it useful for thinking about how RC with vectors might 

develop as a student progresses through the early emphasis of the course and how this progress 

might subsequently play into their learning in the second half. We hypothesize that students with 

lower RC might be less able to engage with more complex concepts later in the course that 

require more integration of multiple representations to develop. Examples include the process of 

integrating information across multiple free-body diagrams and sets of equilibrium equations in a 

frame analysis or integrating free-body diagrams, equations, calculus concepts and graphs of 

shear and moment diagrams. If a student is still devoting significant cognitive effort to 

coordinating and interpreting the basic vector representations, they may have less resources 

available to think about the more complex representations and underlying meaning. 

 



 

 

 

Figure 2. A simplified model for how representational competence with vectors might feed in to 

students’ understanding of a broader set of statics concepts. 

 

We employed three assessment instruments in the study. In all cases, students completed the 

assessments through online tools and received full credit on a nominal participation incentive 

regardless of their actual assessment score. Figure 3 shows the relative timing during the course.  

 

 

Figure 3. Study design illustrating the relative timing of assessments. TRCV = Test of 

Representational Competence with Vectors. MCT = Mental Cutting Test. CATS = Concept 

Assessment Test in Statics, formerly the Statics Concept Inventory (SCI). 



 

 

The Mental Cutting Test (MCT) measures students’ spatial skills [10]. We also considered the 

PSVT:R because of its wide use in the engineering education literature relating to spatial skills 

and student success. However, we ultimately chose the MCT for two reasons. The items on the 

MCT require integration of multiple spatial abilities including sectioning, rotation, and view 

translation from 3D to 2D. We hypothesize all three to be relevant to interpreting various statics 

representations such as 3D problem figures and free-body diagrams of multiple interacting 

bodies. Second, we were concerned about possible ceiling effects in administering the PSVT:R 

that might make this a less effective measure of variability in statics students’ spatial abilities [8]. 

We administered the MCT during the first and last weeks of the term. 

The Concept Assessment Test in Statics (CATS. formerly known as the Statics Concept 

Inventory) is widely used to measure conceptual statics knowledge [23]. We only administered 

the CATS at the end of the course based on suggestions that pretest scores differ little from 

random guessing [24] and to avoid assessment fatigue during the first week. 

The Test of Representational Competence with Vectors (TRCV) measures fluency with vector 

representations and associated concepts [25]. The TRCV is a newer instrument that we further 

developed since initially proposing. We discuss the instrument and some of that development 

work in a little more detail below. We administered the TRCV in week one and at midcourse. 

The midcourse administration comes after coverage of moments and force system resultants, but 

before general rigid body equilibrium.  

Test of Representational Competence with Vectors (TRCV) 

The TRCV is a 16-item multiple-choice assessment of vector concepts and representations in a 

statics context. The items concern position vectors and force vectors in the context of vector 

concepts relevant to statics: vector addition, Cartesian components, dot products, and cross 

products. Assessment design focuses on testing each concept in both 2D and 3D with multiple 

questions integrating different combinations of representations classified as symbolic, numeric, 

diagram and narrative language. Figure 4 on the next page illustrates this approach with two 

items that require interpretation of 3D Cartesian component notation. 

As previously reported, initial validation work included item analysis and correlation of 

assessment scores with students’ productive use of multiple representations in problem solving 

on exams [25]. Subsequent development work led to a significant revision increasing the item 

count from 10 to 17 by disentangling some of the items that required synthesis of multiple vector 

concepts in addition to interpreting multiple representations. We further validated and refined the 

newer more focused items by selecting five items with the lowest discrimination scores (i.e. 

point biserial correlation less than 0.32) and comparing students’ multiple choice answer 

selections with their written explanations for those choices. This analysis led to us discarding one 

item and making some minor revisions to question wording and/or answer choices on some of 

the other four.   

This development work led to increased reliability of the assessment. The 10-item TRCV version 

2.0 published previously had a Cronbach’s alpha statistic of 0.60, indicating questionable 

internal consistency. The newer 16-item TRCV version 4.0 that we use in the present study had 



 

 

an alpha statistic of 0.80 for the pretest (considered good reliability) and 0.93 for the posttest 

(considered excellent reliability). The TRCV is available for instructors and researches to 

administer using the Concept Warehouse [26].   

 

 

Figure 4. Example items from the Test of Representational Competence with Vectors. 

 

Study Population and Context 

We administered the assessments in statics courses taught fall quarter 2020 at three community 

colleges, and then again at two of these colleges in winter quarter 2021. Table 1 summarizes the 

numbers in the study population. The first column gives course modality. All courses in the 

study were online and would otherwise be face-to-face if not for the COVID-19 pandemic. The 

modality column indicates the percentage of course credit hours taught using synchronous 

videoconference. For example, 40% synchronous would mean two hours per week live 

videoconference for a five credit course. Table 2 on the next page presents the population 

demographics. Students in the study self-reported this information as part of the IRB-approved 

informed consent process at the end of each course. 

Table 1. Course modalities and sample sizes in the study population. 

Institution 

and Term 

Online Modality 

(% synchronous) 

Enrollment 

(last week) 

Number 

Consenting 

CC1 F20 40% 21 17 

CC2 F20 100% 31 17 

CC3 F20 100% 25 22 

CC1 W21 40% 13 11 

CC2 W21 100% 24 13 



 

 

 

Table 2. Demographic information of the study population along dimensions of gender, 

race/ethnicity, and age. All data is self-reported. 

Category Breakdown 

Gender  

Female 11.4% 

Male 82.3% 

Other 1.3% 

Prefer not to answer 5.1% 

Race/Ethnicity  

Asian or Pacific Islander 25.3% 

Black or African American 2.5% 

Hispanic or Latinx 6.3% 

Native American, Alaska Native or Indigenous 0% 

White or Caucasian 50.6% 

Multiracial or Biracial 8.9% 

A race/ethnicity not listed 1.3% 

Prefer not to answer 5.1% 

Age  

17 or younger 1.3% 

18-19 20.3% 

20-22 31.6% 

23-29 29.1% 

30-39 11.4% 

40  and above 5.1% 

Prefer not to answer 1.3% 

 

Results and Analysis 

The overarching goal of this study is to use the frameworks posed above to gain insight into the 

two guiding research questions. We approach this with a series of bivariate correlation tests and 

multiple regression analysis to explore how the various assessment scores and course preparation 

measures interact with each other and/or predict later scores. Table 3 on the next page presents 

mean scores aggregated for the full study population for all of the factors included. Students self-

report their grades in prerequisite calculus and physics along with their demographic information 

as described previously. See figure 3 above for the relative timing of the assessments. Note that 

the MCT pretest to posttest gain of 6.4% is slightly lower than the scores reported by Wood [8], 

but still significant with p = .03. End of course CATS scores are in the range reported by Steif 

[20]. 

We consider the MCT pretest score (MCTpre), calculus grade, and physics grade as three 

measures of student preparation that correspond to the spatial abilities, math fluency, and physics 

concepts we propose as three separate but related components to the foundation on which 

students build representational competence (see figure 1). Bivariate correlation tests between 

these three factors yield a significant correlation between calculus grade and physics grade with 

R = 0.427 (p < .001). We find no significant correlation between MCTpre scores and physics 

grade or math grade. The two course grades seem to be providing similar information about 



 

 

student preparation, and that information is different than what the MCT provides. Thus, 

although in principle we believe one could distinguish between relevant math skills and physics 

knowledge as this pertains to statics preparation, the course grades we use in this analysis do not 

cleanly disentangle those things, probably because grades are a “noisier” measure than a targeted 

and carefully constructed assessment like the MCT. So for purposes of our other analyses, we 

will assume the MCT scores capture spatial skills, and the two course grades capture some mix 

of partially overlapping “non-spatial skills,” which could include math and science knowledge as 

well as other things. 

 

Table 3. Assessment scores and course preparation measures. Calculus and physics course 

grades are self-reported. 

Measure N Mean Score St. Dev. 

Calculus grade 78 3.49 0.56 

Physics grade 75 3.27 0.69 

MCTpre 79 54.9% 22.0% 

MCTpost 75 62.4% 19.4% 

TRCVpre 74 44.9% 22.6% 

TRCVpost 60 60.0% 22.1% 

CATS 67 45.7% 22.4% 

 

Factors Predicting TRCV Scores 

Next, we consider the relationship between these three predictors and TRCV scores, starting with 

TRCV pretest scores. It is important to account for the fact that we have data from three different 

institutions. The meaning of a particular course grade could vary by institution, especially 

considering that much of this prerequisite course work occurred during the onset of the COVID-

19 pandemic in spring 2020 with the associated variability in institutional response and grading 

policy. Thus, in this analysis we statistically controlled for institution while seeing whether we 

can predict TRCV scores from the two grades and MCT scores. We used multiple regression to 

construct the model by sequentially adding predictors as Table 4 shows along with the relevant 

fit quality statistics.  

 

Table 4. Model development to predict TRCV pretest scores using MCT, physics grade, and 

calculus grade while accounting for institutional effects. 

Model Predictors R2 R2 Change p-value 

1 Institution .008 .008 .768 

2 Institution, Physics grade .131 .123* .036 

3 Institution, Physics grade, Calculus grade .229 .098 .061 

4 Institution, Physics, Calculus, MCTpre .410 .181** <.001 
*Statistically significant at p<.05, **Statistically significant at p<.01 

 



 

 

Consider model 4 as an example of how we statistically control for institutional effects. The 

linear fit equation is:  

(𝑇𝑅𝐶𝑉) = (𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2) + (𝑏0𝑃 + 𝑏1𝐼1𝑃 + 𝑏2𝐼2𝑃) + (𝑐0𝐶 + 𝑐1𝐼1𝐶 + 𝑐2𝐼2𝐶) + 𝑑0𝑀, (1) 

where the variable 𝐼 is a 2-element array representing institution that takes on the values [0 0], [1 

0] and [0 1] for the three respective colleges in the study. The variables 𝑃 and 𝐶 represent grades 

in prerequisite calculus and physics respectively. Both of these predictors are multiplied by 𝐼 to 

account for institutional differences in grading practices as discussed above. 𝑀 represents MCT 

pretest score. We do not attach these scores to institution since this is a separately validated and 

targeted assessment, as is the TRCV. The coefficients 𝑎-𝑑 are computed using regression. In 

effect, the model computes three parallel regressions (one for each college) to predict TRCV 

scores from calculus and physics grades before aggregating the results and adding MCT as a 

third predictor.  

As shown in table 4, both physics grade (R2 change = 0.123, p = .036) and MCTpre score (R2 

change = .181, p < .001) are significant. Note that we added the different predictors to the model 

sequentially. If the predictors are uncorrelated with each other, the order in which we add them 

will not matter. If they correlate, like physics and calculus grades as discussed previously, then it 

may matter because correlated predictors carry overlapping information that would be redundant 

when used twice. So whichever predictor gets added to the model first gets credit for providing 

that information. Thus, it is important to test another variant of the model where we reverse the 

order in which we add physics and calculus grades. When we do so, we find that calculus grade 

now shows up as a significant predictor (R2 change = 0.118, p = .043) while physics does not (R2 

change = 0.103, p = .052). We note that in both cases, the second predictor is near significance 

with a p-value only slightly higher than 0.05 and suspect that both factors would be significant 

with a larger sample size. This initial analysis supports the idea presented earlier that math 

fluency, physics knowledge and spatial abilities represent different components of foundational 

skills and knowledge students bring to a their statics course experience.    

The analysis above gives some insight into the relationship between physics grade, calculus 

grade, MCT score, and TRCV score at the beginning of the course. We are more interested in 

what happens during the course. The TRCV posttest occurs roughly in the middle of the term, so 

our next analysis uses the same approach as above, but predicting TRCV posttest rather than 

pretest. Table 5 summarizes the results. 

 

Table 5. Model development to predict TRCV posttest scores using MCT, physics grade, and 

calculus grade while accounting for institutional effects. 

Model Predictors R2 R2 Change p-value 

1 Institution .141 .141* .017 

2 Institution, Physics grade .186 .046 .423 

3 Institution, Physics grade, Calculus grade .224 .038 .507 

4 Institution, Physics, Calculus, MCTpre .376 .252** <.001 
*Statistically significant at p<.05, **Statistically significant at p<.01 



 

 

In this analysis, only MCT scores (among course preparation measures) add a statistically 

significant amount of predictive power (R2 change = .252, p <.001). This result holds regardless 

of the order in which we add physics and math grades to the model. Interestingly, the effect of 

MCT scores is somewhat larger than the R2 change we see in the analysis with TRCV pretest 

scores, and the R2 change accounted for by the course grades is roughly half. One interpretation 

of this difference is that students may have learned how to apply more spatially oriented 

reasoning approaches to the TRCV items on the posttest, which led to MCT becoming a better 

predictor while the calculus and physics grades became worse predictors. Another possible 

explanation is that spatial skills may factor in to students’ abilities to make gains on the TRCV in 

general during the first weeks of the course. We tested this hypothesis and found no significant 

correlation between MCT pretest scores and TRCV gains (measured as TRCVpost – TRCVpre). 

We also find some predictive power associated with institution in this model (R2 change = .141, 

p =.017) which may reflect differences in instructional emphasis. 

In summary, we conclude that spatial abilities (as measured by the MCT) appear to be important 

to students’ development of RC with vectors and that this importance may increase as the course 

progresses. Physics and math preparation are likely also important, but the course grades we use 

in this study seem to be too broad a measure to disentangle their relative importance.  

Factors Predicting CATS Scores 

We next extend the analysis to consider how these assessment results might predict CATS 

scores. We will only consider spatial skills regarding initial course preparation because physics 

and calculus grades were not significant predictors of TRCV posttest scores. We conclude these 

two measures are too “noisy” to be particularly useful. This analysis focuses on the chain of 

assessments shown below in Figure 4. Here we hypothesize that the impact of spatial skills on 

statics conceptual knowledge is indirect and mediated [27] by representational competence, 

specifically RC with vectors as measured by TRCV. 

 

 

 
 

Figure 4. Chain of assessments representing the learning model proposed in Figure 2. 

 

We use a simpler model that no longer accounts for institutional effects because we are not 

considering course grades. Table 6 on the next page presents results from another series of 

bivariate correlation tests. MCT pretest scores correlate with TRCV posttest (r = .453, p < .001) 

and TRCV posttest results correlate with CATS (r = .577, p < .001). These are the two links in 

our hypothesized causal chain. 

 

 



 

 

Table 6. Bivariate correlation results for MCTpre, TRCVpost and CATS. 

Assessment Statistic MCTpre TRCVpost CATS 

MCTpre Pearson R 1 .453** .383** 

p-value  <0.001 0.001 

N 79 60 67 

TRCVpost Pearson R .453** 1 .577** 

p-value <0.001  <.001 

N 60 60 56 

CATS Pearson R .383** .577** 1 

p-value 0.001 <.001  

N 67 56 67 
               **Statistically significant at p<.01  

 

We also find that MCT pretest scores correlate with CATS (r = .383, p = .001), not unexpected 

given the proposed chain. The question is whether that correlation occurs because MCT pretest 

directly impacts CATS, or whether it’s only an indirect effect involving TRCV posttest. To test 

that possibility, we contrast two models: 

 

1. MCT pretest predicting CATS after controlling for TRCV posttest 

2. TRCV posttest predicting CATS after controlling for MCT pretest 

 

Given the model proposed in Figure 4, we would expect a significant effect with (2) but not with 

(1). We again use multiple regression and consider the relative effects of adding predictors 

sequentially. Tables 7 and 8 present results for both models. 

 

Table 7. Results using MCT pretest scores to predict CATS after controlling for TRCV posttest. 

Model Predictors R2 R2 Change p-value 

1 TRCVpost .333 .333** <.001 

2 TRCVpost, MCTpre .340 .007 .445 
 **Statistically significant at p<.01 

 

 

 

Table 8. Results using TRCV posttest scores to predict CATS after controlling for MCT pretest. 

Model Predictors R2 R2 Change p-value 

1 MCTpre .125 .125** .008 

2 MCTpre, TRCVpost .340 .215** <.001 
 **Statistically significant at p<.01 

 

The results in Table 7 indicate that MCT pretest scores add no predictive power after controlling 

for TRCV posttest. In contrast, the results in Table 8 show that TRCV posttest results still add 

predictive power (R2 change = .215, p < .001) after controlling for MCT pretest. These results 

suggest that the impact of spatial skills on statics conceptual knowledge is indeed mediated by 

representational competence, as reflected in the causal chain hypothesized above.  



 

 

In a final test we consider whether the MCT posttest that we administered roughly concurrent 

with the CATS results in a stronger correlation. In doing so we find R =  .43 (p < .001). This 

result is in line with findings by Anderson correlating scores on the Card Rotations Test and the 

Paper Folding Test with CATS scores, all administered concurrently [1]. But the correlation 

between MCT posttest and CATS scores in the current study is still noticeably lower than for 

TRCV posttest (R = .58, p < .001). Furthermore, when both TRCV posttest and MCT posttest are 

entered into a regression model to predict CATS scores, only TRCV posttest is a significant 

predictor (p = .001, versus p = .127 for MCT posttest). This result provides further evidence that 

the mediation model using representational competence better explains the relationship between 

spatial skills preparation and statics conceptual knowledge attainment. 

Study Limitations 

There are limitations to this study that we should acknowledge. First and foremost, the data was 

collected in the context of online learning during the COVID-19 pandemic with associated 

extraordinary stressors on many in the community college student population. The students 

involved would otherwise be engaged primarily in face-to-face instruction. It’s possible that the 

patterns identified here may not generalize to more typical instructional contexts. We also 

acknowledge that some of the sample sizes are small when matching student results across 

multiple assessments. Lastly, this study pertains to patterns in how students approach learning 

that may vary across demographic groupings. Prior research concerning the importance of spatial 

skills in STEM education have identified significant differences across some of these categories 

[6]. Our study population is not large enough to disaggregate across demographics. Further 

research is necessary to test whether the model proposed in this study would hold across 

demographic categories and educational contexts.  

Implications for Instruction 

The key results of the study have implications to instruction. We find that (addressing RQ1) 

spatial abilities do indeed factor into students’ ability to develop representational competence 

with vectors, and (addressing RQ2) RC with vectors mediates the importance of spatial abilities 

and correlates with development of conceptual knowledge in statics. The study also identifies the 

TRCV as a potentially useful instrument for assessing whether students are prepared to learn 

statics concepts as measured by the CATS. This last result may seem somewhat surprising 

because the TRCV focuses largely on 3D vector applications (e.g. 10 of 16 items are 3D), but the 

CATS uses exclusively 2D applications to assess conceptual knowledge with little direct 

connections to vector concepts such as 3D Cartesian components and cross products that are 

emphasized in the TRCV. We believe the relationship can be explained by applying the 

framework of RC. The vector language assessed by the TRCV is the vocabulary most statics 

courses use to develop the concepts assessed by the CATS. If students can understand this 

language, they are better prepared to learn the concepts.     

Mechanics faculty, including those involved in this study, often lament how their students seem 

to resist our pleas to draw free-body diagrams as a first step in problem solving or to use vector 

notation and units appropriately in analysis. When viewed through the construct of RC, these 

seemingly disparate struggles start to align as examples of students not making effective use of 



 

 

these representations by integrating them into their problem solving and conceptual reasoning. 

Instead, they may view our insistence as just asking them to follow convention and prefer to use 

only the representations they are most comfortable with (e.g. for many this seems to be algebraic 

equations). This may relate to observations that students seem more likely to rely on memorized 

problem solving procedures (e.g. by referencing examples or homework solution manuals) than 

root their analysis in conceptual understanding [28], [29].  

The results of this study suggest teaching strategies that scaffold students’ development of RC 

may have promise in helping students learn concepts. Potential approaches include providing 

hands-on models and/or virtual simulations, as is commonly done in mechanics instruction, to 

provide students with concrete representations that may anchor their learning. Studies in 

chemistry education support this approach [14], [30].  We propose applying the framework of 

RC toward refining these learning activities with intent to foster RC development.     

More generally, we propose that instructors could think more explicitly about how their students 

interpret and use the representations central to understanding mechanics concepts and problem 

solving. As stated by Moore [18] in the context of a heat transfer course: “thinking through 

multiple representations and translations within and among representations helps engineering 

students negotiate meaning when misconceptions or naıve conceptions are present.” Mechanics 

instructors could consider providing more opportunities for students to practice translating and 

coordinating information across representations. Doing so may involve considering some 

representations that may not seem germane to an application or analysis at hand, but may serve 

useful more as basis for exploring the meaning and connections between representations. 

Additional instruments assessing RC in other areas of mechanics would also be helpful for use in 

formative assessment and evaluating the impact of interventions on student learning. 

Conclusions  

This paper presents a model and associated analysis that suggests an explanation for how spatial 

abilities factor in to students’ development of statics conceptual knowledge by applying the 

construct of representational competence. Our analysis utilizes multiple regression to investigate 

interactions between assessment scores in multiple assessments administered throughout the term 

in statics courses at three different colleges. We find that spatial skills play a significant role in 

students’ development of representational competence with vectors that we hypothesize is 

complementary to the role played by their preparation in prerequisite math and physics. That 

emerging representational competence also predicts their success in acquiring conceptual 

knowledge and seems to mediate the impact of spatial skills preparation. Ultimately we conclude 

that the framework of representational competence is useful for the design of educational 

interventions that seek to improve conceptual learning in mechanics as well as for the assessment 

of their impact on student learning.   
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